

qScript™ XLT cDNA SuperMix

Cat No. 95161-025 Size: 25×20 -µL reactions $(1 \times 100 \text{ µL})$ Store at -25°C to - 15°C

95161-100 100 x 20-µL reactions (1 x 400 µL) 95161-500 500 x 20-µL reactions (2 x 1 mL)

Description

qScript XLT cDNA SuperMix is a next-generation tool for first-strand cDNA synthesis, providing a highly sensitive and easy-to-use solution for two-step RT-PCR and RT-qPCR. qScript XLT is an engineered M-MLV reverse transcriptase with reduced RNase H activity and improved activity and stability at higher temperatures. Combined with a precise mixture of reaction components, this SuperMix enables superior results over a wide dynamic range of input RNA, with up to 8-fold higher sensitivity than cDNA synthesis kits utilizing an RNase H(+) reverse transcriptase (RT). This 5X concentrated master mix provides all necessary components (except RNA template) for first-strand synthesis including: buffer, dNTPs, MgCl₂, primers, RNase inhibitor protein, qScript XLT reverse transcriptase and stabilizers. The unique blend of oligo (dT) and random primers in the qScript XLT cDNA SuperMix captures unbiased representation of all RNA sequences into cDNA product (including the 5'-end, 3'-end, or central regions of long RNAs) and works exceptionally well with a wide variety of RNA templates. However, due to the relatively short average length of random-primed first-strand product, amplicon length for conventional RT-PCR applications should be limited to 1 kb or less.

Components

qScript XLT cDNA SuperMix 5X reaction buffer containing optimized concentrations of MgCl₂, dNTPs (dATP, dCTP, dGTP, dTTP),

recombinant RNase inhibitor protein, qScript reverse transcriptase, random primers, oligo(dT) primer and

stabilizers.

Storage and Stability

Store components in a constant temperature freezer at -25°C to -15°C upon receipt

For lot specific expiry date, refer to package label, Certificate of Analysis or Product Specification Form.

Reaction Assembly

Place components on ice. Mix, and then briefly centrifuge to collect contents to the bottom of the tube before using.

Component Volume for 20-µL rxn. Final Concentration

qScript XLT cDNA SuperMix (5X) 4 μL 1X

RNA template variable (2 µg to 10 pg total RNA)

RNase/DNase-free water $\frac{\text{variable}}{20 \ \mu \text{L}}$

Note: for smaller reaction volumes (i.e. 10-µL reactions), scale components proportionally.

Reaction Protocol

- Combine reagents in 0.2-mL micro-tubes or 96-well plate sitting on ice.
- After sealing each reaction, vortex gently to mix contents. Centrifuge briefly to collect components at the bottom of the reaction tube.
- Incubate:

5 minutes at 25°C
60 minutes at 42°C*

*Note: These conditions are provided as a general guideline and support maximum cDNA yield and sensitivity for global gene expression profiling. Specific applications may benefit from modified reaction conditions. qScript XLT can be used at temperatures up to 54°C for RNA with stable secondary structure(s). However, higher temperatures can compromise cDNA yield for other RNAs. Shorter incubation times (30 min) can be applied when using <500 ng of total RNA template without compromising cDNA yield.

• Use 1/10th (or less) of the first-strand product as template for PCR / qPCR amplification. The optimal amount of cDNA for PCR can vary depending on the amount of starting RNA template, choice of detection chemistry, and abundance of the specific target sequence. The high yield of cDNA resulting from reactions containing ≥ 500 ng of total RNA can overwhelm detection of specific product by SYBR® Green I qPCR. If required, dilute cDNA product with 10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA. Store first-strand product at -20°C.

95161 / IFU-105.1 REV 02

Guidelines for Reverse Transcription-gPCR

Minus RT-controls: Accurate quantification of gene expression by RT-qPCR requires testing and reporting the extent of contamination of genomic DNA in each RNA sample for each gene of interest. The presence of trace amounts of gDNA does not usually interfere with quantification of high copy reference genes. However, it can have a significant contribution on signal for low copy genes. Even when using primers that are separated by intronic sequence or bridge exon junctions, the presence of genomic DNA can produce positive signals from amplification of pseudogene or off-target PCR product. Therefore, it is important to always include the appropriate "no RT" or "minus RT" control reactions in your experimental design.

Since the reverse transcriptase is an integral component of qScript XLT cDNA SuperMix, it is not feasible to construct a formal cDNA synthesis control that includes all components except the RT. The most direct method to test for the presence of genomic DNA is to bypass the RT step and use an equivalent amount of the RNA preparation directly for PCR amplification. For example: if you start with 1 µg of total RNA for cDNA synthesis and use 1/10th of the first-strand reaction as template for qPCR; then use 100 ng of total RNA as template for the minus RT-control qPCR. Any signal from the RNA only reaction is attributable to the presence of genomic DNA.

DNase digestion of total RNA: Trace levels of genomic DNA can obscure accurate quantification, particularly when the specific gene(s) of interest are low copy. PerfeCTa® DNase I is a high purity, recombinant DNase I preparation that is free of any contaminating RNases. It provides a simple and rapid solution to eliminate residual genomic DNA that is directly compatible with qScript XLT cDNA SuperMix, or other first-strand synthesis kits. The supplied Reaction Buffer and proprietary Stop Buffer support a simple heat-kill step that permanently inactivates all trace levels of DNase activity before the cDNA synthesis step. Heat-kill procedures used by other DNase I reagents are ineffective and not compatible with qScript XLT cDNA SuperMix. Residual, or renatured, DNase will degrade cDNA product and alter apparent expression levels. If using other sources of RNase-free DNase I, it is essential to remove all traces of DNase activity before proceeding with first-strand synthesis. Suitable RNA purification methods include phenol:chloroform extraction followed by ethanol precipitation, or the use of chaotropic salts and a silica-based RNA purification cartridge or column. Please call technical support at (800) 364-2149 or visit our web site at www.quantabio.com if you require additional information or protocols.

Quality Control

Kit components are free of contaminating DNase and RNase. qScript XLT cDNA SuperMix is functionally tested in reverse transcription quantitative PCR (RT-qPCR). First-strand synthesis is performed in triplicate on each dilution of a log-fold serial dilution of HeLa cell total RNA from 1 pg to 1 μ g. One-tenth of each first-strand reaction is used for qPCR amplification. Kinetic analysis must demonstrate linear resolution over five orders of dynamic range ($r^2 > 0.990$) and a PCR efficiency > 90%.

Limited Label Licenses

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

- 1. The product may be used solely in accordance with the protocols provided with the product and this manual and for use with components contained in the kit only. QIAGEN Beverly, Inc. grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this manual, and additional protocols available at www.quantabio.com. Some of these additional protocols have been provided by Quantabio product users. These protocols have not been thoroughly tested or optimized by QIAGEN Beverly, Inc.. QIAGEN Beverly, Inc. neither guarantees them nor warrants that they do not infringe the rights of third-parties.
- 2. Other than expressly stated licenses, QIAGEN Beverly, Inc. makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.
- 3. This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.
- 4. QIAGEN Beverly, Inc. specifically disclaims any other licenses, expressed or implied other than those expressly stated.
- 5. The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN Beverly, Inc. may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

This product is covered by US patent 7,470,515, US patent 7,638,612 and other patents pending in the United States and Europe. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer. The buyer is not authorized to sell or otherwise transfer this product, any of its components to a third party. The purchase of this product does not authorize the purchaser to use the product or any of its components for manufacture of commercial product. For information on obtaining a license to this product for purposes other than research, contact Licensing Department, QIAGEN Beverly, Inc. 100 Cummings Center Suite 407J Beverly, MA 01915; Telephone number: 1-800-364-2149.

©2018 QIAGEN Beverly Inc. 100 Cummings Center Suite 407J Beverly, MA 01915
Quantabio brand products are manufactured by QIAGEN, Beverly Inc.
Intended for molecular biology applications. This product is not intended for the diagnosis, prevention or treatment of a disease.

Related Products

PerfeCTa DNase I, Cat. No. 95150-01K

qScript is a trademark of QIAGEN Beverly, Inc. PerfeCTa is a registered Trademark of QIAGEN Beverly, Inc. SYBR is a registered trademark of Molecular Probes, Inc.

95161 / IFU-105.1 REV 02 2