# LANCE Ultra G9a Histone H3-Lysine N-methyltransferase Assay 

LANCE ${ }^{\circledR}$ Ultra

## Authors

Marjolaine Roy
Valérie Paquet
Liliana Pedro
Nancy Gauthier
Anne Labonté
Anja Rodenbrock
Geneviève Pinard
Lucille Beaudet
Roberto Rodriguez-Suarez
PerkinElmer, Inc.
Montreal, QC
Canada, H3J 1R4

This LANCE Ultra immunodetection assay measures the di-methylation of a biotinylated Histone H3 (1-21) peptide at lysine 9.

## Europium-anti-methyl-Histone H3 Lysine 9

(H3K9me2) Antibody

- TRF0403-D: $10 \mu \mathrm{~g}, 1,562$ assay points*
- TRF0403-M: $100 \mu \mathrm{~g}, 15,625$ assay points*
*40 fmol/assay point


## Peptidic Substrate Sequence:

ARTKQTARKSTGGKAPRKQLA-GG-K(BIOTIN)-NH2

## LANCE Ultra Assays

LANCE UItra time-resolved fluorescence resonance energy transfer (TR-FRET) assays use a proprietary europium chelate donor dye, W1024 (Eu), together with ULight ${ }^{\text {TM }}$, a small molecular weight acceptor dye with a red-shifted fluorescent emission.

In this technical note, we present the optimization of an epigenetic enzymatic assay using a biotinylated histone H3-derived peptide as substrate. The modified peptide is captured by the Eu-labeled antibody (Eu-Ab) and ULight-Streptavidin (SA) which bring the Eu donor and ULight acceptor dye molecules into close proximity. Upon irradiation at 320 or 340 nm , the energy from the Eu donor is transferred to the ULight acceptor dye which, in turn, generates light at 665 nm . The intensity of the light emission is proportional to the level of biotinylated substrate modification.


Figure 1. Schematic representation of the LANCE Ultra detection of a modified
histone peptide.

## Development of a G9a Histone H3-Lysine N-methyltransferase Assay

## Reagents needed for the assay:

Europium-anti-methyl-Histone H3
Lysine 9 (H3K9me2)
LANCE Ultra ULight-Streptavidin
Histone H3 (1-21) peptide, biotinylated
LANCE Detection Buffer, 10X
G9a (human), recombinant
White opaque OptiPlate ${ }^{\text {TM }}$-384
TopSeal ${ }^{\text {TM }}$-A films
S-(5'-Adenosyl)-L-methionine chloride (SAM)
Sinefungin
S-(5'-Adenosyl)-L-homocysteine (SAH)
BIX 01294

PerkinElmer \# TRF0403
PerkinElmer \# TRF0102
AnaSpec \# 61702
PerkinElmer \# CR97-100
BPS Bioscience \# 51001
PerkinElmer \# 6007299
PerkinElmer \# 6005185
Sigma \# A7007
Sigma \# S8559
Sigma \# A9384
Sigma \# B9311

SAM is prepared at 30 mM in $5 \mathrm{mM} \mathrm{H}_{2} \mathrm{SO}_{4} / 10 \%$ ethanol ( $\mathrm{v} / \mathrm{v}$ ) in $\mathrm{H}_{2} \mathrm{O}$, aliquoted and stored at $-80^{\circ} \mathrm{C}$.
Assay Buffer: 50 mM Tris-HCl, pH 9.0, $50 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT, $0.01 \%$ Tween-20

Experiment 1: Enzyme Titration and Time-Course


Enzymatic progress curves were performed by incubating G9a at concentrations ranging from 0.02 to 3 nM with 500 nM biotinylated H3 (1-21) peptide substrate and $300 \mu \mathrm{M}$ SAM. Detection Mix was added to stop the reactions at the indicated times and signal was read after 60 min . A 30 min reaction time using 0.15 nM enzyme was selected for all subsequent experiments. Signal decrease observed at higher enzyme concentration or reaction time is due to the generation of peptides tri-methylated at lysine 9, which are not detected by the Eu-anti-methyl-Histone H3 Lysine 9 (H3K9me2) antibody.

Experiment 2: SAM Titration


Serial dilutions of SAM ranging from 3 nM to $300 \mu \mathrm{M}$ were added to 0.15 nM G9a and 500 nM biotinylated H3 (1-21) peptide substrate. A $20 \mu \mathrm{M}$ SAM concentration was selected for subsequent experiments.

## Standard Protocol

- Dilute G9a enzyme, SAM, inhibitors and biotinylated peptide substrate in Assay Buffer just before use.
- Add to the wells of a white Optiplate-384:
- $5 \mu \mathrm{~L}$ of inhibitor (2X) or Assay Buffer
- $2.5 \mu \mathrm{~L}$ of enzyme (4X)
- $2.5 \mu \mathrm{~L}$ of biotinylated Histone H3 (1-21) peptide/SAM mix (4X). For SAM titration, add SAM dilutions independently of substrate.
- Cover the plate with TopSeal-A film and incubate at room temperature (RT).
- Prepare Detection Mix by diluting the Eu-Ab to 4 nM , ULight-Streptavidin to 100 nM and poly-L-lysine* to $0.0002 \%$ in 1X LANCE Detection Buffer (final concentrations of $2 \mathrm{nM}, 50 \mathrm{nM}$ and $0.0001 \%$, respectively, in $20 \mu \mathrm{~L}$ total assay volume).
- Add $10 \mu \mathrm{~L}$ of Detection Mix.
- Cover with TopSeal-A film and incubate for 60 min at RT.
- Remove the TopSeal-A film and read signal with EnVision ${ }^{\circledR}$ Multilabel Reader in TR-FRET mode (excitation at 320 or 340 nm \& emission at 665 nm ).
* The poly-L-lysine (Sigma \#P8920) present in the Detection Mix stops the enzymatic reaction.

Experiment 3: Enzyme Inhibition


Serial dilutions of sinefungin and SAH ranging from 1 nM to 1 mM , and of BIX 01294 ranging from 100 pM to $100 \mu \mathrm{M}$ were pre-incubated for 10 min with 0.15 nM G9a. Enzymatic reactions were initiated by the addition of 500 nM biotinylated H3 (1-21) peptide substrate plus $20 \mu$ M SAM. Enzymatic reactions contain $2 \%$ DMSO.

Experiment 4: Z'-factor Determination


G9a ( 0.15 nM ) was pre-incubated with or without $100 \mu$ M BIX 01294 for 10 min . Enzymatic reactions were initiated by the addition of 500 nM biotinylated H3 (1-21) peptide substrate plus $20 \mu \mathrm{M}$ SAM. Enzymatic reactions contain 2\% DMSO.

## PerkinElmer, Inc.

940 Winter Street
Waltham, MA 02451 USA
P: (800) 762-4000 or
(+1) 203-925-4602
www.perkinelmer.com

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs
Copyright ©2010, PerkinEImer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.
009388_01 Printed in USA Oct. 2010

